

ANTENNA DEVELOPMENT FOR MULTIFUNCTIONAL ARMOR APPLICATIONS USING EMBEDDED SPIN-TORQUE NANO-OSCILLATOR (STNO) AS A MICROWAVE DETECTOR

UNCLASSIFIED: Dist A. Approved for public release

maintaining the data needed, a including suggestions for redu	nd completing and reviewing the cing this burden, to Washington should be aware that notwithsta	e collection of information. Sen Headquarters Services, Directo	nd comments regarding this orate for Information Opera	burden estimate or a tions and Reports, 12	tions, searching existing data sources, gathering and ny other aspect of this collection of information, 115 Jefferson Davis Highway, Suite 1204, Arlington ling to comply with a collection of information if it
1. REPORT DATE 09 AUG 2011				3. DATES COVERED -	
4. TITLE AND SUBTITLE Antenna Development for Multifunctional Armor Applications Using Embedded Spin-Torque Nano-Oscillator (STNO) as a Microwae Detector				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Elena Bankowski				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA				8. PERFORMING ORGANIZATION REPORT NUMBER 22159	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC/RDECOM	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 22159	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited					
		•	_	••	ymposium 9-11 August 2011,
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT				18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	OF PAGES 23	

Report Documentation Page

Form Approved OMB No. 0704-0188

SPIN-TORQUE DIODE EFFECT

AC current excites magnetization precession in the free layer (spin torque)

AC variations of the electrical resistance of the structure (GMR/TMR/MTJ)

rectified dc voltage:

$$V_{\rm dc} = \langle R(t) I_{\rm ac}(t) \rangle$$

Standard "in-plane" spin-torque diode

$$V_{
m dc} \propto rac{I_{
m ac}^2 \sin^2(eta_0)}{\Gamma^2 + (\omega - \omega_{
m FMR})^2}$$

Spin torque excites small-angle magnetization precession about equilibrium direction

- Resonance diode frequency \approx FMR frequency $\omega_{\rm FMR}$
- Frequency range of detection \approx FMR linewidth Γ
- Output voltage ∞ square of the input current I_{ac} (quadratic detector)
- Efficiency strongly depends on the angle β between magnetizations of the free and pinned layers

Diode sensitivity:

$$\kappa = \frac{\text{output voltage}}{\text{input power}} \sim 1000 \frac{\text{mV}}{\text{mW}}$$

C. Wang et al., JAP **106**, 053905 (2009)

"Out-of-plane" spin-torque diode

Spin torque **can excite**large-angle out-of-plane
magnetization precession

Theoretical model

- Free layer circular pillar (no in-plane anisotropy) radius 50 nm, thickness 1 nm
- Resistance: $R_0 = \Delta R = 1 \text{ k}\Omega$
- Bias magnetic field perpendicular to the plane, smaller than the saturation field, $H_0 < 4\pi M_s$
- Magnetization of the pinned layer in plane (along x axis)
- No dc bias current

Angular dependence of the resistance:

$$R(\beta) = R_0 - \frac{\Delta R}{2} \cos \beta$$
 $\cos \beta = \cos \theta(t) \cos \phi(t)$

Block- Diagram of the Spintronic MTJ Sensor

Spintronic microwave sensor circuit design includes:

- Coplanar Waveguide (CPW) antenna
- Magnetic Tunnel Junction (MTJ) detector
- ESD protection circuit

Design of the sensor antenna

Coplanar waveguide (CPW) antenna

Projections of the CPW antenna directional diagram

(7)

Design of the MTJ sensor

- (1) Coplanar waveguide antenna, (2) MTJ detector, (3) ESD protection circuit,
- (4) brass screw holder, (5) brass set-screw, (6) magnet, (7) SMA connector.

Fabricated Spintronic MTJ Sensor VER VEHICLE ELECTRONICS AND ARCHITECTURE

MTJ Detector with CPW Antenna VF

Spintronic Detector Characterization

- 1 6 GHz initial scan done to determine approximate resonance frequency
 A group detectors with in-plane magnetization: focused scans at 4-6 GHz
 B group (out-of-plane detectors): focused scans at 1-3 GHz
- •10 Detectors were tuned for maximum sensitivity using the adjustable magnet (set screw from 0 to 3 turns at 1/2 turn increments)
- Multiple peaks were present in some detector plots.
- •B group out-of-plane detectors typically had a higher output voltage (5B was the best detector with approximately 6.5 mV output voltage).
- •The absolute value of the extrema represented the voltage magnitude
- •Tuning the magnet on the B group changed both the sensitivity and the resonance frequency. For the A group, it only changed the sensitivity.

Spintronic Detector Test Setup

UNCLASSIFIED: Dist A. Approved for public release

Spintronic Detector Test Inside the Anechoic Chamber VEHICLE ELECTRONICS AND ARCHITECTURE

Detector Distance Testing Inside the Anechoic Chamber

Detector Characterization inside the Anechoic Chamber: Obstacle Comparison - SiC

Detector Characterization inside the Anechoic Chamber: Obstacle Comparison - Alumina VEHICLE ELL

Detector Characterization: Obstacle Comparison

Frequency [GHz]

SUMMARY

- We proposed a novel regime of operation of a spin-torque diode, based on excitation of large-angle out-of-plane magnetization precession.
- The specific features of the proposed spin-torque diode are:
 - Higher output voltage (>1 mV).
- The out-of-plane precession regime might be responsible for extremely high diode efficiencies observed in recent experiments.
- •CPW antenna was used as a feed line to the detector. The transmitting antenna was a commercial horn antenna.
- •Ten spintronic detectors of microwave radiation were built and tested at TARDEC.
- •We are in the process of integrating of these radar detectors into armor.
- •There will be more tests performed at TARDEC when integration is completed.
- •Arrays of spintronic radiation-hard detectors have two important applications: analysis of frequencies of incoming signals and RF energy harvesting.

Microwave energy harvesting

Energy harvesting device

Microwave radiation

Spin-torque ac/dc converter

Operation principle

ac current $I_{ac}(t)$

magnetization precession (spin-torque effect)

microwave resistance (TMR effect)

dc voltage V_{dc} (<u>spin-diode effect</u>)

Estimated efficiency (per converter):

$$P_{out,dc} = TMR^2 \frac{P_{in,ac}^2}{I_{cr}^2 R_0}$$

 $TMR \sim 0.3$ – tunneling magnetoresistance

 $I_{cr} \sim 1 \; \mathrm{mA}$ – critical spin-torque current

 $R_0 \sim 1~{\rm k}\Omega$ – electrical resistance

$$P_{in,ac} = 0.1 \text{ mW} \rightarrow P_{out,dc} = 1 \text{ } \mu\text{W}$$

Research Collaborators and Acknowledgements

- TARDEC Research Team: Dr. Thomas Meitzler (Team Leader, Research Engineer), Dr. Elena Bankowski (Research Engineer) & Mr. Steven Zielinski (Engineer).
- •Oakland University Research Team: Dr. Andrei Slavin (Chair, Physics Department), Dr. Vasil Tiberkevich (Research Associate Professor).
- •We would like to thank Dr. Ilya Krivorotov (Assistant Professor), University of California at Irvine, and his research group for manufacturing prototype spintronic MTJ diodes for our experiments.
- •We would like to thank TARDEC Director Dr. Grace Bochenek, the Chief Scientist Dr. Dave Gorsich and GVSS Associate Director Mr. Steve Knott for their support of this innovative research project.

Backup Slide:

Expressions defining the antenna directional diagram

$$P(\theta, \phi) = \frac{1}{240\pi} \left(\left| E_{\theta}(\theta, \phi) \right|^{2} + \left| E_{\phi}(\theta, \phi) \right|^{2} \right)$$

Dependence on the in-plane angle

$$P_{\theta}(\phi) = \sqrt{\frac{P(\theta, \phi)}{P_0}} \bigg|_{-180^{\circ} \le \phi \le 180^{\circ}, \theta = const}$$

Dependence on the out-of-plane angle

$$P_{\phi}(\theta) = \sqrt{\frac{P(\theta, \phi)}{P_0}} \Big|_{-90^{\circ} \le \theta \le 90^{\circ}, \phi = const}$$

$$P_0 = \frac{1}{8\pi} \operatorname{Re} \int_0^{\pi} d\theta \int_0^{2\pi} d\phi \left(E_{\theta} H_{\phi}^* - E_{\phi} H_{\theta}^* \right) \sin \theta$$

